

AGM JUNE 2019

DISCLAIMERS

This presentation includes certain

"FORWARD-LOOKING STATEMENTS"

All statements, other than statements of historical fact, included herein, including, without limitation, statements regarding future plans and objectives of the company, are forward-looking statements that involve various risks, assumptions, estimates and uncertainties, and any or all of these future plans and objectives may not be achieved.

The term Metallurgical Silicon Metal, Mg Si, and Silicon are used interchangeably and refer to high purity silicon between 98.0% Si and 99.5% Si. The terms SoG Si, Solar Grade Silicon and Polysilicon are used interchangeably and refer to high purity silicon used to produce solar cells for solar panel. Depending on the production method used, chemical or metallurgical, the purity ranges from 5N+ (99.999% Si) purity for Si produce metallurgically to 6N and 9N for Si produce via the chemical route.

These statements reflect the current expectations or beliefs of HPQ-Silicon Resources Inc. ("the Company") and are based on information currently available to the Company. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. All of the forward looking statements contained in this presentation are qualified by these cautionary statements and the risk factors described above. Furthermore, all such statements are made as of the date this presentation is given.

An investment in the Company is speculative due to the nature of the its business. The ability of the Company to carry out its plans as described in this confidential presentation is depending on obtaining the required capital. There is no assurance that the Company will be able to successfully raise the capital required or to complete each of the growth initiatives described. Investors must rely upon the ability, expertise, judgment, discretion, integrity and good faith of the management and Board of the Company.

Silicon Metal End Markets

Megatrends	Implications	End Customer Product	
Population Growth	Growing middle class China and India: consumption economy	 Silicones: healthcare, cosmetics, packaging 	
Urbanization	India, Brazil, and other emerging markets: infrastructure build	 Silicon: aluminum for cars, housing growth Silicon: Silicone sealants for construction applications 	
Energy Efficiency	Lightweighting of vehicles Electric vehicles	 Silicon as alloying agent for aluminum to replace steel in vehicles Prospects for silicon alloys in batteries 	
Alternative Energy & Sustainability	Growing demand for solar, and other sources of renewable energy	 Higher consumption of silicon for polysilicon used to make solar panels Prospects for silicon Base Energy Storage 	

SILICON METAL (Si) NEEDED FOR ELECTRIC CARS

A HISTORY OF SUCCESSFUL RESULTS

The aluminum alloy chassis of Tesla car is 10% Silicon!

Aluminum silicon alloy makes the aluminum lighter and stronger

Silicon also found in the battery anode

Silicon in the windshield

CRU Silicon market outlook

Silicon demand continues to be driven by chemical sector

Silicon consumption by intermediate end-use, '000 t

CRU Silicon market outlook

Greenfield plants will provide the majority of new capacity

Contribution to the expected growth in annual production capacity outside China and the CIS between 2010 and 2020, %

HPQ SOLUTION TO MEET Mg Si DEMAND:

New Greenfield plants needed to meet anticipated demand requires scale (> 30,000 MTY):

- Capex Cost range between US\$8 to US\$9 per Kg of annual capacity or US\$ 240M to US\$ 270M investments¹
- OPEX are high with little cost control options (70% of Operating Cost are process driven and variable)

- New HPQ PUREVAP[™] plants maximum scale efficiency reached at 5,000 MTY
 - Capex Cost between US\$8.59 for 2.5K plant down to US\$5.93 per Kg of annual capacity at 5k MT per year²
 - Representing investment between US\$ 21M to US\$ 30M investments
 - Lowest operating cost process with capacity to control OPEX cost

HPQ intend to maximize the proprietary advantages of its PUREVAP[™] process with the following two prong strategy:

- Near term cash flow niche market silicon metal applications (Chemical Grade Si, batteries,...), and
- High Purity silicon for advanced PV applications

HPQ GLOBALLY RENOWNED TECHNICAL PARTNERS

HPQ - SILICON R E S O U R C E S

PYROGENESIS Plasma Expertise: One of the largest in the World

+25 years of experience & > 70 employees

>60 Patents worldwide (issued or pending)

40,900 ft² Manufacturing facility

The inventors of Plasma Atomization (Gold Standard)

World Leader In Advanced Plasma Processes

Technology Sold To US Navy For Use On Aircraft Carriers

Technology Tested and Validated By DARPA

Leaders in High Purity Spherical Metal Powders for Industrial 3D printing

Developer of PUREVAP One-Step Process To Produce High Purity Low Boron Silicon Metal

Developer of DROSRITE[™]: a Green Aluminum Recovery from Dross process

Agreements With Global Manufacturers and Trading Houses

SOLAR SUB-MARKET OF MG SI LARGE US\$ MARKET THAT IS GROWING!

Renewable solar energies:

Solar Grade Si market: US\$ 7.1 B in 2018 - to exceed -US\$ 11.8 B by 2028

(Source: Deutsche Bank, Future Market Insights report titled, "Polysilicon Market: Global Industry Analysis 2013-2017 and Opportunity Assessment 2018-2028".)

SOLAR ON THE VERGE OF A PARADIGM SHIFT!

LCO benchmark value (\$/MWh)

DEMAND READY TO EXPLODE!

AT THE CUSP... BUT...

Solar power is at the cusp of fulfilling its renewable energy potential

But process improvements to produce Solar Grade Silicon Metal (SoG Si) have plateaued, creating a **"Catch 22"**

HPQ PUREVAPTM

THE SOLUTION TO THE SOLAR INDUSTRY'S "CATCH 22"

Technological innovation is needed to lower per unit costs, but the High Capex & Low Margins increase the degree of difficulty of executing an innovation-oriented business plan

Source: The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation† (Energy Environ. Sci., 2015, 8, 3395)

HPQ SOLAR SOLUTION START WITH

The PUREVAP[™] QRR, a new proprietary (patent pending) carbothermic process:

SiO₂ 98.5+% Carbon

That will bring about ↓ SoG Si Capex 60% - 86% ↓ SoG SI Cash Cost 30% - 60% ↓ CO₂ Release by Up to 96%

4N + Si with low boron <1 ppm

HPQ GLOBALLY RENOWNED TECHNICAL PARTNERS

A French Company fully dedicated to the field of energy transition

Created in 2001 by a team of engineers and scientists with longstanding expertise in Silicon Purification and Crystallisation - Solar Silicon -Photovoltaic Cells - Photovoltaic Modules

Now Part of YRIEL Group, active in Fine Chemistry, Aromatic and Renewable Energies

23 Patents to their name

Obtained, an independently confirmed, world record conversion efficiency of 21.1% with monocrystalline ingots, for a solar cell made with 100% "SoG Si UMG"

HPQ TECHNOLOGICAL SOLUTION

FROM QUARTZ TO SOLAR WAFERS

How HPQ will implement its technological solution By Combined Expertise In Three Critical Steps:

HPQ QUARTZ PYROGENESIS' PUREVAP™ PROCESS

HPQ – SILICO R E S O U R C E

The PUREVAP[™] technology of PyroGenesis transforms Quartz (SiO₂) to High Purity Silicon Metal (4N+ Si < 1 ppm B) in one step -"PUREVAP[™] Si"

PyroGenesis and Apollon Solar experts are developing a streamlined metallurgical pathway (UMG) for upgrading the "PUREVAP™ Si" to HPQ Solar Grade Silicon Metal (SoG Si)

Apollon Solar has the expertise to transform HPQ SoG Si into high performance multicrystalline and monocrystalline solar cells: "wafers"

SoG Si TO WAFER WITH APOLLON

PUREVAP™ UMG CAPEX DISRUPTIVE POTENTIAL

Not Optimized Purevap UMG Capex (US\$ Cost per Kg of Annual Capacity) (5N+) (Canada) **Optimized Siemens Solar** (6N - 7N) (China) Optimized Siemens Solar (6N - 7N) (US & Europe) Standard Siemens Solar (6N - 7N) (China) Standard Siemens Solar (6N - 7N) (US & Europe) Standard Siemens Electronic (9N - 11N) (China) Standard Siemens Electronic (9N -11N) (US & Europe) **FBR Reactor** (6N - 7N) (China) FBR Reactor (6N - 7N) (US & Europe) Elkem UMG (5N+) (Norway) FerroGlobe UMG (5N+) Spain

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

PUREVAP[™] QRR + UMG Process Not-optimized Potential Cash Cost Range *

Copyright © 2018 PvInsights.com All rights reserved

* Estimates will be firm up after Pilot plant phase

HPQ PUREVAP™ GHG DISRUPTIVE POTENTIAL

70% of the GHG generated by any solar project comes from the production of SoG Si (source: Energy Policy, February 2014, Pages 229-244)

HPQ's SoG Si is poised to produce the lowest carbon footprint

SoG Si in CHINA, world's largest producer, generates 141 Kg of CO₂ per Kg of SoG Si SoG Si in **GERMANY** using the same process, generates 87 Kg of CO₂ per Kg of SoG Si SoG Si in **QUEBEC** with the PUREVAPTM expected to produce $5.4 \text{ Kg of CO}_2 \text{ per Kg of SoG Si}$

HPQ Si FOR BATTERIES: AN UNEXPECTED POSITIVE

A By-Product of PUREVAP™ is production of Si with application in the battery market

HPQ Si Powders

NANOSIZE HIGH PURITY Si POWDERS FOR LI-ION BATTERIES

R&D being done to develop to produce porous nanoparticles of Si \succ

Paraclete Energy's standard silicon metal

Combining HPQ Purevap 2N+ Si and PyroGenesis Powders expertise to produce amorphous nanoparticles of Si

INDICATION OF POTENTIAL VALUE **OF HPQ SI-P** NANOSIZE SI **POWDER**

system.

Paraclete Energy	's stan	dard silico	n metal
products:			
<u>Contact Us for Product</u> nSiO – Nanoparticle silico			rface
≥99.5%			\$250
nSiH – Nanoparticle silico	n metal witl	100g n hvdrogen on th	
≥99.5%		100g	\$500
1Si – Raw silicon metal wi	th substant	ally <0.5% impu	rities metals basis. This
product is highly reactive	to air.	,	
≥99.5%	100g	<u>Contact us f</u>	or details
n <mark>Si/C</mark> – Nanoparticle silico	on metal wit	h carbon on the	surface.
≥99.5%		100g	\$700
<mark>1Si/Cg</mark> – A composite of na	anoparticle	silicon metal wit	h graphene on the surfac
≥99.5%		100g	\$800
1Si/Cg/P – A composite of	nanopartic	le silicon metal v	vith graphene and
polymer on the surface.			
≥99.5%		100g	\$900
<mark>5M-Silicon™</mark> – Nanoparti			rietary S urface M odifier
that acts as artificial SEI fo	r cycle stab	-	
≥99.5%	100g	<u>Contact us f</u>	
SM-Silicon/C™ – Nanopa			
optimized to the customer	sapplicati	on, binder, electi	otyte, and cathode

Type/Form = Crystalline Powder **Purity =** ≥99.5% Surface Purity = 0% SiO2, air stable (except nSi) **Total Metals Impurities = <0.5%** APS = 150nm (For PSD other than D50 150nm - Contact PE for a quote.) **BET / SSA =** $30 \text{ m}^2/\text{g}$ Tap Density = 0.8 g/cm³ **Color =** Gray to dark gray (except nSiO: yellowish brown) Morphology = Non spherical **mp** = 1414° C * The composition would change by the specific

The following characteristics for all of PE's silicon*:

SEM image of R&D Products

Silicon/PL[™], nSi/C, nSi/Cg, nSi/Cg/P, nSiO, nSiH) be it custom SM for our SM-Silicon[™] or C, graphene, polymer or oxygen for the other R&D products.

PILOT PLANT FULLY FINANCED

ADVANCING TO PRODUCTION

Pilot Plant Commissioning and Commercial Production

WHY INVEST IN HPQ?

HPQ PUREVAP™ The successful innovation that will reduce the cost barriers to renewable energy

Advances from bench testing confirms cost savings potential and set the stage for Pilot Plant testing, with a new focus on Mg Si, SoG Si at commercial production, and the battery industry

WHY INVEST IN HPQ?

Successful Gen 1 & 2 Bench Test (2016-2019) Validated the process

Gen 3 Pilot Plant Testing Operational Q4 2019

Sales of Gen3 Si Expected 2020 Commercial Plant Order - 2021

PUREVAPTM PROCESS

VERSUS TRADITIONAL SILICON METAL PROCESS:

VERSUS ACTUAL PROCESS FOR SOLAR GRADE SILICON:

Low purity feedstock → High Purity Silicon Metal 98.5% SiO₂ + Reactive Carbon → (99.73%Si)R (99.99+% Si)A

THE ONLY 1-STEP PROCESS WORDWIDE

Solve State
 Solve

Vs. Traditional Mg Si Smelters

Traditional Metallurgical Silicon Metal Plant that NEED:

High purity feedstock → Metallurgical Silicon Metal (99.5%SiO₂) + From 98.0% Si to 99.5% Si Low Ash Carbon

Disruptive technology for Solar Energy

 \downarrow 60% (China - Lowest) to 86% Capex

↓30% (China - Lowest) to 60% Opex

Reduce the use of aggressive chemicals

Reduce production of dangerous byproducts during refining

↓ 96% Energy Carbon Footprint

MANAGEMENT AND BOARD SUMMARY

Aanagement

Bernard J Tourillon, BAA, MBA Chairman, President, CEO and Director

Patrick Levasseur Vice-President, COO and Director

Noelle Drapeau, LLL, MBA, PMP Corporate Secretary and Director

Francois Rivard CFO

Major Investors

Management & Board	\cong 9.7%	≅ 10.5% (FD)
PyroGenesis	\cong 9.7%	≅ 12.1% (FD)
Investissement Quebec		\cong 8.8% (FD)
Strategic Investors	\cong 2.8%	\cong 6.2% (FD)
Key Investors	≅ 18.8 %	$5 \cong 21.2\%$ (FD)

/Transfer Agent

Computershares

Independent Director (*)

Richard Mimeau, B.Sc. Director

Peter Smith, PhD, P. Eng. Director

Robert Robitaille, B.A., L. Ph. Director

Daryl Hodges H. BSc, M.Sc.. Director

Consultants/ Technical Advisors) رالت

Marcel Drapeau, BA, BSC. Comm, LLL

PyroGenesis Canada

Apollon Solar SA

Marc Richer-Lafleche, P, Geo, PhD

Auditors

Raymond Chabot Grant Thornton

Bernard J. Tourillon, B.A.A, MBA Chairman, President and CEO <u>bernard.tourillon@hpqsilicon.com</u> +1 514 907-1011 Patrick Levasseur Vice-President, COO and Director <u>patrick.levasseur@hpqsilicon.com</u> +1 514 262-9289

3000 Omer-Lavallée St, Suite 306 Montreal, Quebec, CANADA, H1Y 3R8

+1 514 372 0066

www.HPQSilicon.com

APPENDIX

LEGACY PROCESS

Present Carbothermic process Quartz to silicon metal (Si)

SiO₂ 99.5% + Low Ash Coal + Wood Chips

Electric Arc Furnace

Energy Consumption: 12,000 kWh/t

Present Chemical process MG-Si to SoG-Si

Energy Consumption: between 72,000 to 120,000 kWh/t

LEGACY PROCESS

Present Metallurgical Process Used By Elkem Solar and Ferroglobe

98,5% to 99.0% Si

5N+ SoG Si