

GREEN ENGINEERING SILICA AND SILICON MATERIALS TECHNOLOGY

— INVESTMENT HIGHLIGHTS

HPO - A TECHNOLOGY COMPANY ENGAGED IN DEVELOPING GREEN ENGINEERING PROCESSES

HPO SILICON INITIATIVES

Developing Strategic Silicon solutions with proprietary low-cost transformation technologies

- ▶ Transforming Silica into Silicon in a greener and more efficient manner
- Producing, in one step, Silicon material perfectly suited for high values applications (Battery sector, Silicon Nitride, and more)
- Technologies protected by multiple HPQ-owned patent applications

HPO FUMED SILICA INITIATIVES

Developing proprietary new low-cost green transformation technologies to make Fumed Silica

- > Material produced has applications in a wide range of industries (pharmaceuticals, agriculture, renewables and more)
- Plasma base process, no hazardous chemical, no HCl release, 86% reduction in energy and related carbon footprint
- Technology protected by HPQ-owned patent application

HPO HYDROGEN INITIATIVES

Developing, with Novacium SAS, a new autonomous process for making hydrogen via hydrolysis of silicon and other materials

MEASURED AND ACHIEVABLE 3-YEAR GROWTH PLANS TO START COMMERCIALIZING OUR TECHNOLOGIES

EXPERIENCED MANAGEMENT TEAM & BOARD SUPPORTED BY TECH PARTNER PYROGENESIS CANADA INC

STRONG INSTITUTIONAL SUPPORT FROM MAJOR SHAREHOLDER IO INVESTISSEMENT OUEBEC

- DISCLAIMERS

This presentation includes certain

"FORWARD-LOOKING STATEMENTS"

All statements, (other than statements of historical fact included herein), including, without limitation, statements regarding future plans and objectives of the company, are forward-looking statements that involve various risks, assumptions, estimates and uncertainties, and any or all of these future plans and objectives may not be achieved.

These statements reflect the current expectations or beliefs of HPQ Silicon Inc. ("the Company") and are based on information currently available to the Company as of **March 2023**. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. All of the forward-looking statements contained in this presentation are qualified by these cautionary statements and the risk factors described above. Furthermore, all such statements are made as of the date this presentation is given.

An investment in the Company is speculative due to the nature of the its business. The ability of the Company to carry out its plans as described in this presentation depends on obtaining the required capital. There is no assurance that the Company will be able to successfully raise the capital required or to complete each of the growth initiatives described. Investors must rely upon the ability, expertise, judgment, discretion, integrity and good faith of the management and Board of the Company.

The Corporation is a technology company engaged in green engineering processes that is: 1) Developing the PUREVAP[™] Quartz Reduction Reactor (QRR), a new carbothermic process to transform Quartz into Silicon (patent granted in the United States & pending in other jurisdictions); 2) Aiming to become North America first producer of micron size High Purity Silicon Powders; 3) Developing the PUREVAP[™] Nano Silicon (Si) Reactor (NSiR), (Patent Pending) a new process to transform Silicon (Si) chunks into Spherical Nano powders and Nano wires for the next generation of Lithium-ion batteries; 4) Developing the Fumed Silica Reactor (FSE), a new plasma process that will allow a direct Quartz to Fumed Silica transformation and 5) Working with NOVACIUM SAS developing a compact process for the production of hydrogen via hydrolysis of silicon and other materials.

The terms Silicon, Silicon Metal and Si are used interchangeably. Metallurgical Grade Silicon or MG Si refers to Silicon Metal of a purity between 98.0% Si and 99.5% Si. High Purity (HP Si) or Upgraded Metallurgical Grade Silicon (UMG Si) refers to Silicon Metal of a purity between 99.9% Si and 99.99% Si.

Transforming the global economy to achieve net-zero emissions by 2050 could require:

- US \$9.2 trillion in annual average spending on physical assets
- ▶ US \$3.5 trillion more than today

McKinsey & Company – The net zero transition January 2022

HPQ IS DEVELOPING, WITH THE SUPPORT OF WORLD CLASS TECHNOLOGY PARTNERS, NEW GREEN PROCESSES CRUCIAL TO MAKE THE CRITICAL MATERIALS NEEDED TO REACH NET ZERO EMISSIONS

Becoming a green low cost (Capex and Opex) producer of High Purity Silicon (2N+ to 4N):

2N Silicon is the key feedstock to make materials needed for our modern lives and the clean energy revolution

> 2N Silicon anticipated demand to generate a 1 Millions Tonnes (MT) Silicon deficit over the next 10 years

Becoming North America first producer of micron size High Purity Silicon (3N & 4N Si) powders:

Micron-size Si and SiO_x powders are presently used in Li-ion Batteries and for other clean teach applications

Material potential, already generated NDAs by batteries producer & a major players with request for material

Working to become the first producer of nano silicon materials from High Purity Silicon chunks

Spherical Silicon Nanopowders and Nanowires will be critical for the next generations of Li-ion Batteries

▶ Received a firm order (on an "if as" and "when" basis) for Si Nanopowders from major car manufacturer

Becoming a green low cost (Capex and Opex) producer of Fumed Silica:

The new plasma process will allow a direct Quartz to Fumed Silica transformation

No hazardous chemical process, no Hydrogen Chloride Gas (HCI) Release, 86% reduction in energy footprint

Developing a small and compact process for the on-demand production of hydrogen via hydrolysis of Silicon and other materials

— SILICON AND ITS MARKETS

Silicon (Si) or Silicon Metal, is a semi-conductor material and the second most abundant element in earth's crust. Like all other energy metals (lithium, graphite, cobalt, nickel, etc.) it does not exist in its pure state and is expensive to extract!

EU declared Silicon a critical raw material as a wide range of modern technologies depend on it to make various numbers of industrial and consumer products

ESG aspect of its manufacturing and transformation is a key factor for end users

- To extract silicon commercially from Quartz (SiO2) an expensive & energy intensive carbothermic process, first invented in 1899, is still used
- Depending on final application, (Solar, Electronics, Batteries) Chemical grade Silicon (99.5% Si) must either be purified or engineered

SILICON (Si) DEMAND TO REACH 3.8 MILLION TONNES, WORTH US\$ 20 BILLION BY 2025 (Source CRU)

- ▶ The bulk of the growth will be driven by demand for chemical grade Silicon (99.5% Si)
- New plants will be needed to meet demand
- > Traditional processes to make Silicon have a significant obstacle for new entrants: access to process know-how
- Most of the "low hanging fruit" have been picked and near-term alternatives to Chinese supply are limited

- SILICON CHALLENGES HPQ OPPORTUNITIES

- **01** THE SILICON MARKET IS RIPE FOR THE DEVELOPMENT OF DISRUPTIVE TECHNOLOGIES
- **02** HPQ STRATEGIC SILICON SOLUTION INITIATIVES FOCUS ON DEVELOPING THESE DISRUPTIVE TECHNOLOGIES
- **03** HPQ FIRST DISRUPTIVE TECHNOLOGY : LOW-COST 3N (99.9%) to 4N+ (99.99%) SILICON

THE PUREVAP™ QUARTZ REDUCTION REACTOR (QRR)

- A new low capex, opex and carbon footprint process to make up to 4N+ Si in one step
- > This technology is a unique proprietary process protected by patent applications
- > Developing this technology, HPQ is gaining unique Silicon process know-how
- Commercial validation of this new process started in Q2 2022
- > 3N to 4N+ Silicon is HPQ's fundamental product that opens many high-value product lines

Quartz (SiO₂) to High Purity Silicon (Si) – PUREVAP[™] QRR Process

- HPQ SILICON MARKETS & APPLICATIONS

Industrial demand for *PUREVAP[™] QRR* Silicon is large and will be driven by the following factors:

- Demand for High Purity Silicon (3N to 4N Si) as feedstock to make:
 - Micron-size silicon powders for today's Li-Ion battery applications and other highvalue applications like Silicon Nitride
 - > Nano silicon powder and Nanowires for next-generation Li-Ion battery applications
- Auto and EV manufacturers need Metallurgical Grade Silicon (98.5% Si) to make vehicles lighter & stronger
- Demand for Chemical Grade Silicon (99.5% Si) is driving the need for new plants because of its usage as feedstock to make:
 - Silicones, an end market growing at a 10.7% CAGR, expected to reach US\$ 23 B by 2025 (Source marketsandmarkets.com)
 - Polysilicon for solar & electronics, an end market growing at 20% CAGR expected to surpass US\$ 200 B By 2026 (Source marketsandmarkets.com)

- VALUE PROPOSITION: DEVELOP & MONETIZE

— PUREVAP™ QRR OUR FIRST DISRUPTIVE TECHNOLOGY

GAME CHANGING VERSATILITY VERSUS CONVENTIONAL PROCESS DATING FROM 1899

Conventional plants produce 98 % to 99.5 % Silicon (Si):

- o Scalable by minimum increments of 30,000 MTY
- Minimum investment > US\$ 200 M
- o 2N+ Si production limited at 40% of plant output
- Requires additional purification steps for Battery use
- Need 6 MT of Feedstock to produce 1 MT
- On average, it costs > US\$ 2,000/mt to make 98% Si (MG Si)

▶ PUREVAP™ QRR: THE BEST OPTION FOR NEW PLANTS NEEDED TO MEET SILICON DEMAND

PUREVAP[™] QRR process to produce 99.5 % to 99.99 % Silicon (Si):

- o Scalable by minimum increments of 2,500 MTY
 - o Minimum investment 85% 90% less than conventional plant
- o 3N to 4N+ Si production in one step
 - Allow HPQ to make a material perfect for battery applications for less than any of our competitors
- Need 4.5 MT of Feedstock to 1 MT
- New process expected to make 3N to 4N Si for < US\$ 2,000/mt

Quartz (SiO₂) to Raw Silicon (Si) - Conventional Carbothermic Process

Quartz (SiO₂) to High Purity Silicon (Si) - PUREVAP™ QRR Process

- PUREVAPTM QRR LOW COST, HIGH PURITY

PUREVAP™ QRR OPEX VERSUS COMPETING Si PRODUCERS USING TRADITIONAL PROCESS

Inflation-adjusted prices are higher than they were in the early 2000s

US spot price of 5.5.3 grade silicon (98.5% Si) vs. avg. operating cost at plants outside China and the CIS in real terms, \$/t

PUREVAP[™] ORR

HPQ SI

Silicon in the 2020s (Source: CRU)

— PUREVAP[™] QRR PILOT PLANT FIRST Si MATERIAL PRODUCED DEC 2022

EU 2N + (99.5) SILICON SPOT PRICE 6,000 €

▶ 67% premium over the price of 5.5.3 or 98.5% Si Source: NOVACIUM SAS

SILICON PRICES ARE SUPPORTIVE OF THE PUREVAPTM QRR INITIATIVE

TRADITIONAL AND NEW EMERGING MARKETS REQUIRE NEW PLANTS TO MEET DEMAND

HPQ UNIQUE ADVANTAGES

PUREVAPTM QRR capability to produce:

- > 2N Silicon for less (Opex and Capex)
- > 3N to 4N Silicon in one step versus traditional process that require multi steps to do the same

- PUREVAPTM QRR INDICATIVE TIMELINE

STARTED IN 2015, HPQ HAS IMPLEMENTED AN INNOVATION DRIVEN TECHNOLOGY DEVELOPMENT STRATEGY

PROJECTS	2023		2024		2025	2026	
PUREVAP™ QRR	<i>Gen3 QRR</i> Pilot plant validation of technology,	Technical, Economic, and Operational Scaling Up Feasibility Studies	<i>Gen4</i> , Engineering, Equipment Procurement and Financing	Gen4 PUREVAP™ QRR commercial plant (s) Construction – Commissioning			Start of commercial production

2022 QRR PILOT PLANT MILESTONES REACHED

- Pilot Plant assembly completed,
- Commissioning completed, Pilot Plant Functional
- ⊘ Pilot Plant Powered up Static Dynamic test successfully completed, Pilot Plant Operational
- Pilot plant started to process material and produced Silicon

2023 QRR UPCOMING CATALYSTS

- Completing test series #1 batch testing the system until enough material is produced to complete a successful Silicon pour
- Completing test series #2 Semi-continuous batch production until the system completes at least 6 continuous production cycle per day, with each cycle yielding 20 kg of Silicon per pour
- Completing test series #3 producing battery-grade silicon (at least 3N+) in one step
- Producing materials for HPQ Battery Initiative
- Start of the Technical, Economic and Operation Scaling Up feasibility studies

- HPQ SILICON FOR BATTERY INITIATIVE

Following the onboarding of Novacium in Q3 2022, HPQ is working to become North America first producer of micron size Silicon powder and SiOx powders for batteries by 2024

HPQ expects to use the 2,500 tonnes per year (TPY) of High Purity Silicon produced by its Gen4 PUREVAP[™] Quartz Reduction Reactor (QRR) as feedstock for a battery material production line, among other applications.

Between now and then, HPQ intends to build up its capacity gradually and gain the expertise and market presence (share) to accomplish that goal.

HPQ's first modular production line capacity will be set at 200 TPY capacity to produce less than 5 microns size Si powders or 300 TPY of less than 5 microns SiOx powders.

- MICRON SIZE SILICON BATTERY OPPORTUNITY

- Electric Vehicle Demand is growing exponentially
- Resulting battery raw material demand to stress supplies
- ► Graphite:
 - o Is the largest (by %) key mineral in an EV battery
 - o Demand exceed supply for the first time in 2022
 - Deficit projected to grow to 8M tonnes by 2040 (Source: https://www.mining.com/)
- Replacing a small percentage (5 to 10%) of graphite in the anode chemistry with micron-size Si or SiOx powders could:
- Address the ongoing graphite deficit
- Improve battery performance

Silicon for batteries demand, principally in the form of micron size 3N + Si and SiOx powders, is projected to exceed 200K MT worth ≈ US\$ 2.6 B by 2030 (CAGR +50%),

Source: CRU and Business Korea.co.kr

- HPQ SILICON FOR BATTERY INITIATIVE

HPQ intends to become North America's first micron-size silicon and SiO_x producer in 2024, 2 years before the first gen4 PUREVAP™ QRR is operational

PROJECTS	2023		2023		2023		2023		2023 2024		2026	
BATTERY INITIATIVE	Testing industrial equipment's that can make micron size Si Powders	Finalizing pathway to manufacture commercially 3N+ <5- micron Si and SiOx powders	Set up & start a complete North American production line that can produce 200 TPA of Micron size (<5-micron) Si powders or 300 MT of micron size (<5-micron) SiOx powders	Continually scale up and expanding our produ SiOx powders by increments of 300 Mt up to a feedstock coming from our first <i>Gen4 PL</i>	ction capacity to make micron size (<5-micron) a capacity capable of handling the 2,500 MT of <i>JREVAPTM QRR</i> commercial plant in 2026							

2023 BATTERY INITIATIVE UPCOMING CATALYSTS

- Producing small quantity (15 kg) of 3N+ micron size (<5 micron) Si powder</p>
- Producing larger quantity of 3N+ micron size (<5 micron) Si powder (≥ 800 Kg)
- Having the material tested at different high-level research centers
- Developing pathway to secure access to high purity silicon feedstock
- Finalizing pathway to manufacture commercially 200 TPA of Micron size Si powders or 300 MT of micron size SiOx powders
- Secure the services of a project manager and sales team
- Start marketing of material to prospective buyer / shipping samples to them
- Testing material to see if Novacium patented surface treatment process can improve battery performance
- Finalize site emplacement and start equipment procurement process

- QUEBEC AN EMERGING KEY HUB FOR BATTERY SUPPLY CHAIN

HPQ is a Quebec - based company and stands to benefits from these initiatives

Developing a uniquely clean and traceable supply chain

Source: Ministère de l'Énergie et des Ressources naturelles, "Quèbec Plan for the Development of Critical and Strategic Minerals 2020-2025 (QPDCSM)", 2021

Investissement Québec International

Québec 🔡

— PUREVAP™ NSiR NEXT GENERATION LI-ION

Over the last few years HPQ signed at least seven (7) NDAs with EV manufacturers, battery makers and other highvalue materials companies. From these HPQ can divulge the following:

- Most of the NDAs signed indicated a strong preference for micron size Silicon material
- Most of the one interested in the nano size material are working in next generation Li-ion batteries

While the objective remains to develop the NSiR, in the near term, our focus will be centered on manufacturing high purity Micron size Silicon material for EV, battery makers and others

HPQ NANO NEW PROCESS TO PRODUCE NANO SI MATERIAL FOR NEXT GENERATION LI-ION BATTERIES

A new scalable, versatile, low-cost plasma process with a capability to produce tailor made spherical Si materials from < 100 nanometer (nm) up to 1 micrometers (μm)

Material produced by **PyroGenesis** during proof-of-concept test

SILICON NANOPOWDERS

SILICON NANOWIRES

- FUMED SILICA REACTOR: ANOTHER DISRUPTIVE TECHNOLOGY

- Fumed Silica (Pyrogenic Silica) is a versatile value-added white microscopic powder with high surface area & low bulk density
- Due to its unique properties commercial applications encompass various industries including personal care, pharmaceuticals, agriculture (food & feed), adhesives, sealants, construction, batteries and automotive to name a few

	RE	REAL		PROJECTION		
	2016		2022			
Fumed Silica Market	Quantity MTY	Value (USD)	Quantity MTY	Value (USD)		
Global	300,000	1,500 million	425,000	2,263 million		
North American	59,100	416 million	76,000	575 million		
Canadian	19,300	136 million	24,400	185 million		
	· · ·		· · · · · · · · · · · · · · · · · · ·			

- In 2021, HPQ signed an agreement with PyroGenesis covering the development of a new Fumed Silica Reactor development program and the future commercialization of fumed silica materials produced by the process
- Included in the agreement, the \$2 million stated cost of construction and operation of a 50 mt per year commercial pilot plant will be covered by the following parties:
 - The Federal Government of Canada (SDTC) will pay \approx 33% of the cost,
- HPQ Silica Polvere Inc (an HPQ subsidiary) will pay \approx 29% of the cost, and

• The Quebec Government (TED) will pay \approx 30% of the cost,

• PyroGenesis Canada Inc will cover the remaining \approx 8% and act as operator

- TRADITONAL FUMED SILICA PROCESS VS NEW PROCESS

- HPQ INNOVATIONS: FUMED SILICA INDICATIVE TIMELINE

PROJECTS	2023		2024		2025		2026	
FUMED SILICA	Small scale testing of different Fumed Silica Pilot Plant configurations	Engineering – Construction – Commissioning of Fumed Silica Pilot Plant	Pilot plant validation of technology	Technical, Economic, and Operational Scaling Up Feasibility Studies	First commercial plant Engineering, Equipment Procurement and Financing	Fumed Silic Construct	a commercial plant (s) ion – commissioning	

FUMED SILICA INITIATIVE UPCOMING CATALYSTS

- Finalize ongoing small-scale testing of different pilot plant design configuration
- Finalize design choice for the Fumed Silica Reactor pilot plant
- Finalize equipment decision and procurement process
- Building and commissioning test a pilot plant
- Start testing program to produce 170 kg/day continuous feed
- Start producing Fumed Silica
- Produce high-quality product (Fumed Silica with High surface area (100-200 m2/g), rheological properties (STMD196-18),
- Produce 5m3 of quality fumed silica and send to customers for testing.

Scan microscope image of material produce during testing

ONGOING COLLABORATION WITH HPQ

Since Novacium onboarding in Q3 2022, the collaboration has been focused around the following three areas:

- 1. R&D assistance and collaboration on HPQ's processes (PUREVAP™ RRQ):
 - a) Supporting, optimizing and sharing knowledge and know-how, etc.

(Two new QRR patents already filed)

- 2. Collaborating on complementary R&D to develop innovative processes in the following niche sectors:
 - a) Manufacturing silicon or SiOx particles for battery applications

(Work crucial to HPQ Battery Initiative)

- a) Manufacturing carbon particles or super-capacitor applications
- 3. Capitalizing on their knowledge and know-how in the hydrogen sector, the technical team is developing:
 - a) A new autonomous process for making hydrogen via hydrolysis of silicon and other materials

- HPQ INNOVATIONS: INDICATIVE TIMELINE

STARTED IN 2015, HPQ HAS IMPLEMENTED AN INNOVATION DRIVEN TECHNOLOGY DEVELOPMENT STRATEGY

PROJECTS	2023			202	24		2025	:	2026
PUREVAP™ QRR	<i>Gen3 QRR</i> Pilot plant validation of technology,	Teo Econo Operatio Up F St	chnical, omic, and onal Scaling easibility tudies	<i>Gen4</i> , Engineering, Equipment Procurement and Financing	<i>Gen4 PUREVAP™ QRR</i> commercial plant (s) Construction – Commissioning				Start of commercial production
BATTERY INITIATIVE	Testing industrial equipment's that can make micron size Si Powders	Finalizing mani commerc micron S por	g pathway to ufacture ially 3N+ <5- ši and SiOx wders	Set up & start a comp production line that car Micron size (<5-micron) micron size (<5-mic	olete North American a produce 200 TPA of Si powders or 300 MT of ron) SiOx powders	Continually sca powders by increm	Continually scale up and expanding our production capacity to make micron size (<5-micron) powders by increments of 300 Mt up to a capacity capable of handling the 2,500 MT of feedstocl from our first <i>Gen4 PUREVAP[™] QRR</i> commercial plant in 2026		
FUMED SILICA	Small scale testing of different Fumed Silica Pilot Plant configurations	Eng Cor Con of Fumed	gineering – struction – nmissioning I Silica Pilot Plant	– Pilot plant validation ng of technology lot Plant		First commercial plant Engineering, Equipment Procurement and Financing		Fumed Silica commercial plar Construction – commissioni	ut (s) ng
HYDROGEN TECHS	Developing, a new autonomous process for making hydrogen via hydrolysis of silicon and other materials		Building lab concept of the making hydrog	scale prototype for proof of new autonomous process f en via hydrolysis of silicon a other materials	or Building larg nd new autonon	ge scale prototype for comm nous process for making hy silicon and other mate	nercial validation of the drogen via hydrolysis of erials	Technical, Economic, a Feasibil	nd Operational Scaling Up lity Studies

HPQ SILICON

- UPCOMING CATALYSTS

01. PUREVAP™ QRR Project

Completing test Series #1 – Silicon Pour

Completing test Series #2 – Semi-continuous batch production

Completing test Series #3 – Production of 3N Si

Start of technical, Economic feasibility studies

02. BATTERY INITIATIVE

 \checkmark

Producing test size of < 5-micron Si Powders

Producing (≥ 800 Kg) of < 5-micron Si Powders

Material test at High-Level research center

Start of technical, Economic feasibility studies

03. Hydrogen Project

Finish design of a new autonomous process for making hydrogen via hydrolysis

HPQ CAPITAL STRUCTURE

Major Investors	Basic	Fully Diluted
IQ (Investissement Québec)	9,6%	8,6%
PyroGenesis Canada Inc.	6,4%	9.8%
Management & Board	6.3%	10.4%
Strategic Investors	7,5%	9.0%

52 weeks

	Price	Low	High
(As of March 15, 2023)	\$ 0,260	\$ 0,195	\$ 0,62
Basic Shares Outstanding			
Options (Average Price \$0.6	1 / Duration 2	,71 years)	
Warrants (Average Price \$0.	306)		
Fully Diluted Shares Outstar	nding		
Market Capitalization (Basic)		
Market Capitalization (Fully	Diluted)		
Cash and Cash equivalent a	vailable for pr	ojects advanc	ements

- MANAGEMENT, BOARD & OTHERS

Management

- Bernard J. Tourillon, BAA, MBA Chairman, President, CEO and Director
- Noelle Drapeau, LLL, MBA, PMP Corporate Secretary and Director
- Francois Rivard VP, CFO
- Derick A. Lila, MSc, MA **Director Marketing Communications**

Independent Directors

Richard Mimeau, B.Sc.

Director

- Peter Smith, PhD, P. Eng. Director
- Robert Robitaille, M.B.A., L. Ph. Director
- Daryl Hodges H. BSc, M.Sc. Director
- Patrick Levasseur


		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	r\$	赳
	U4	35
		~~~
		-

Consultants/ Technical Advisors

- Marcel Drapeau, BA, BSC. Comm, LLL
- PyroGenesis Canada Inc

Transfer Agent

Computershare

Auditors

▶ KPMG S.E.C.N.R.L.

0

3000 Omer-Lavallée St. Suite 306 Montreal, Quebec, CANADA, H1Y 3R8

(t) +1-514-846 3271 (f) +1-514-372-0066

Œ

www.hpgsilicon.com

CONTACT

Bernard J. Tourillon, B.A.A, MBA Chairman, President and CEO bernard.tourillon@hpgsilicon.com +1-514-846-3271